

TABLE OF CONTENTS

Extern

GENERAL

01	WHAT ARE SCOPE 1, 2 AND 3 EMISSIONS?
02	PROGRESS REPORT DEME EMISSIONS WORLDWIDE
03	GHG EMISSIONS DASHBOARD (WORLDWIDE) - 2021
04	PERFORMANCE DASHBOARDS (WORLDWIDE)
05	CO2 EMISSIONS DASHBOARD (BENE)
06	PERFORMANCE DASHBOARDS (BENE)

Scope 1 emissions are direct emissions from DEME managed or controlled sources

Scope 2 emissions are indirect emissions from the generation of purchased electricity from a utility company

GEI	NERAL	ISO14064-1§9.3.1		
01	COMPANY PROFILE	Α	S/A	EXT
02	REPORT RESPONSIBILITIES AND REPORTING PERIOD	B, C, R	S/A	EXT
03	ORGANIZATIONAL BOUNDARIES AND REPORTING BOUNDARIES	D, E	S/A	EXT
04	QUANTIFICATION METHODOLOGY, BASE YEAR AND BASE YEAR CHANGES	K, L, M, N	S/A	EXT
05	ENERGY MANAGEMENT APPROACH	G, I	S/A	EXT
06	EXCLUSION OF CO2 EMISSION SOURCES	P, Q	S/A	EXT
07	ASSESSING AND REDUCING UNCERTAINTIES	S, T	S/A	EXT
08	ENERGY PERFORMANCE INDICATORS		S/A	INT
09	INVENTORY VERIFICATION AND GWP VALUES		S/A	EXT
10	WHAT IS ENERGY?		S/A	INT
11	WHAT IS CO ₂ ?		S/A	INT

PROGRESS AND CARBON FOOTPRINT REPORT – BELGIUM & THE NETHERLANDS

01	EVOLUTION SCOPE 1 EMISSIONS	S/A	EXT
02	EVOLUTION SCOPE 2 EMISSIONS	S/A	EXT
03	REDUCTION TARGETS SCOPE 1 AND 2 EMISSIONS	S/A	EXT
04	SCOPE 1 TARGET PROGRESS	S/A	EXT
05	SCOPE 2 TARGET PROGRESS	S/A	EXT
06	SCOPE 3 TARGET PROGRESS	S/A	INT
07	ENERGY MANAGEMENT ACTION PLAN	S/A	EXT
08	EMISSIONS AND REDUCTIONS – PROJECT LEVEL	S/A	EXT
09	SCOPE 1 AND 2 CARBON FOOTPRINT	S/A	EXT
10	REFERENCES CO2 PERFORMANCE LADDER	3 YEARLY	EXT

- 01 COMPANY PROFILE
- 02 REPORT RESPONSIBILITIES AND REPORTING PERIOD
- 03 ORGANIZATIONAL BOUNDARIES AND REPORTING BOUNDARIES
- 04 QUANTIFICATION METHODOLOGY, BASE YEAR AND BASE YEAR CHANGES
- 05 ENERGY MANAGEMENT APPROACH
- 06 EXCLUSION OF CO2 EMISSION SOURCES
- 07 ASSESSING AND REDUCING UNCERTAINTIES
- **08** INVENTORY VERIFICATION AND GWP VALUES
- 09 WHAT IS ENERGY?
- 10 WHAT IS CO₂?

01. COMPANY PROFILE

DEME is a world leader in the highly specialised fields of dredging, solutions for the offshore energy industry and infrastructure and environmental works. The company has more than 140 years of knowledge and experience and throughout its history as a leader in innovation and new technologies has always taken a pioneering approach.

DEME's vision is to work towards a sustainable future by offering solutions to global challenges: rising sea levels, a growing population, reduction of CO2 emissions, polluted rivers and soils and the scarcity of minerals.

DEME has its roots in Belgium but has a strong presence on all seas and continents of the world and is active in more than 90 countries. The company can count on 5,200 highly skilled professionals around the world. With a versatile and modern fleet of more than 100 ships, backed by a wide range of auxiliary equipment, the company can provide solutions for even the most complex projects.

DEME achieved a turnover of 2.50 billion euros in 2021.

03. REDUCTION TARGETS SCOPE 1, 2 AND 3 EMISSIONS

DEME'S GLOBAL AMBITION

As stated in our Energy and GHG Policy, the following ambitions and goals are set on DEME worldwide level.

We want to continuously challenge ourselves to develop more sustainable solutions within our portfolio and at the same time excel in our operations. This two-dimensional approach is anchored in our sustainability strategy, which is also aiming to help to achieve the United Nations' 17 Sustainable Development Goals.

In order to achieve these ambitions DEME has set longterm goals to:

- strive for a climate-neutral organisation by 2050 and to reduce GHG emissions in the project value chains
- minimize the environmental impact of our operations
- strive for a net positive impact on biodiversity and ecosystems

When it comes to CO₂ and GHGs we have chosen to take IMO's current strategy into account and to even go above and beyond its requirements. More specifically we aim to:

- keep improving the energy efficiency in our operations;
- work towards climate neutral operations by 2050 (scope 1 & scope 2)
- reduce the GHG emissions generated by our operational fleet by 40% by 2030 in relation to 2008 per unit of work (scope 1 & scope 2)
- reduce the GHG emissions in our project value chains (scope 3)

02. POLICIES AND STATEMENTS

DEME's core values reflect our unshakable belief in the quest to deliver excellence. They serve as a compass that guides the way we work with our business partners, within communities, and with each other. Detailed information regarding our core values (STRIVE) is expressed in DEME's mission, vision and values statement.

As part of this belief, DEME has developed an Energy & Green House Gas emissions policy.

This policy describes:

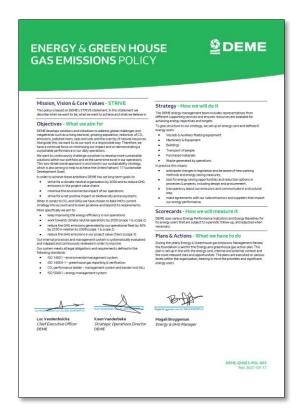
- what we aim for
- how we will do it
- how we will measure it
- what we have to do

To describe how we will achieve our predetermined goals, we developed an annual action plan that follows our energy user structure.

SAFETY

LEADERSHIP

& INTEGRITY



INNOVATION VALUE CREATION

ENVIRONMENT

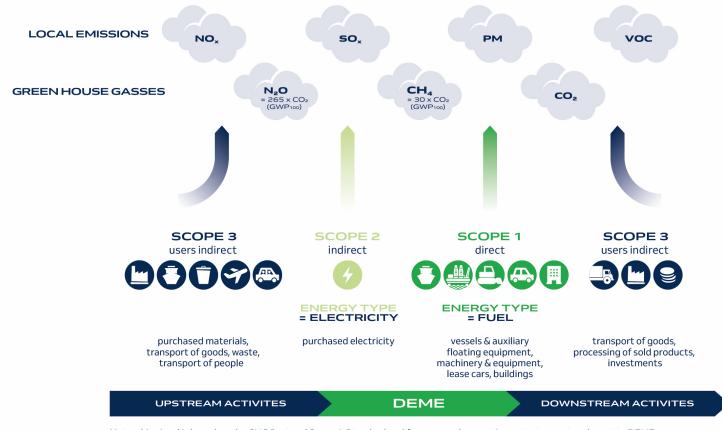
02. REPORT RESPONSIBILITIES AND REPORTING PERIOD

The Energy and carbon footprint described in this report is intended for the use within the ISO 50001 and CO₂ Performance ladder boundary. The Energy and GHG inventory is compiled under the responsibility of the DEME Corporate QHSE-S Manager and in accordance with the ISO 14064 principles.

The source of the data can always be found in a tag near the chart or table.

REVIEW TABLE

ACTION	RESPONSIBLE	FUNCTION	DATE
PREPARATION	NICK DEBOEVER	QHSE-S ENGINEER	1/09/2022
REVISION 1	MAGALI BRUGGEMAN	ENERGY DIRECTOR	9/09/2022
FINAL REVISION	KAREL HUYBRECHTS	DEME QHSE-S MANAGER	13/09/2022


Our DEME Reporting Principles

03. ORGANIZATIONAL BOUNDARIES AND REPORTING BOUNDARIES

To define the operational boundaries, the CO2 emissions are categorized in different scopes as determined by the GHG Protocol:

- Scope 1: contains all direct emissions. Direct emissions occur from sources that are owned or controlled by the company, such as the consumption of fuel and natural gas.
- Scope 2: covers indirect emissions from the consumption of purchased electricity. Scope 2 emissions physically occur at the facility where electricity is generated.
- Scope 3: is a reporting category that includes all other indirect emissions. Scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or controlled by the company. This includes air travel and subcontractor's equipment for example.

Note: this visual is based on the GHG Protocol Scope 3 Standard and focuses on the most important aspects relevant to DEME

Energy Performance Booklet 2021

11

03. ORGANIZATIONAL BOUNDARIES AND REPORTING BOUNDARIES

The boundary determination is based on the GHG protocol method 'operational control'. A company has operational control over an operation if the company (or one of its subsidiaries) has the full authority to introduce and implement its operating policies at the operation. Under the operational control approach, 100% of scope 1 (direct emissions) and scope 2 company emissions from operations over which the company has operational control are accounted for.

To eliminate double counting and allow cross verifications with the operational parameters of DEME's fleet under its control, joint operations (mainly joint venture projects) require a specific approach. A difference is made between emissions due to mutually operated equipment and emissions due to separate equipment.

If DEME has operational control over an entity: all the mutual emissions are taken up into DEME's carbon footprint, in addition to the emissions from DEME equipment used. If DEME has no operational control, only emissions from DEME equipment are taken up in the DEME inventory.

04. QUANTIFICATION METHODOLOGY, BASE YEAR AND BASE YEAR CHANGES

The identification of GHG sources and energy users provides the basis for the quantification of the emitted GHGs. Multiplying the data from the emission sources and energy consumers, each with their relevant emission factor, results in the carbon footprint.

The base year for the DEME organisation is set at the year 2008. Targets, objectives and goals are always considered in relation to this year, unless explicitly stated otherwise.

Changes in the quantification methodology or base year will be conducted considering quality improvement to the reported data, transparent towards the intended users.

The emission inventory or base year will only be recalculated in case of changes to operational boundaries or fixed emissions factors.

05. ENERGY MANAGEMENT APPROACH

To give structure to our strategy, we set up an energy card and defined 5 significant energy users:

ASSET TYPE

The energy card contains emission factors that are linked to these asset types. For each of those energy users, we have defined objectives, targets and specific action plans.

06. EXCLUSION OF CO2 EMISSION SOURCES

According to ISO 14064-1, direct or indirect GHG sources whose contribution to GHG emissions or removals is not material or whose quantification would not be technically feasible or cost effective, may be excluded from quantification.

The following GHG sources were excluded from the DEME carbon footprint.

- Cutting & welding gases: Gases such as acetylene and oxygen are occasionally used on worksites and on ships for cutting and welding purposes when repairing equipment. The research on the significance of cutting and welding gases indicates that the data collection would not be proportional with the significance in the carbon footprint report at this time.
- b) Lubricants: Various sorts of lubricants are used in normal conditions i.e. to protect internal combustion engines and reduce friction between moving surfaces. Waste oil is processed according to IMO MARPOL requirements. Lubricants are not included in the GHG emission inventory at this time.
- c) Air condition refrigerants: Air conditioning refrigerants are purchased on an ad hoc basis. Their consumption can be found in offices and on-board ship's logs. However, the leakage of these gases is minimal and not material.
- Scope 3 emissions: Not all scope 3 emissions are reported by DEME. Only the most essential emissions that can be monitored and for which reduction measures can be taken, are considered. For more details see Document [DEME-QHSE-DOC-002].

07. ASSESSING AND REDUCING UNCERTAINTIES

The qualitative influences of uncertainty on the DEME GHG emission inventory (or in this case GHG - carbon footprint) are the following:

- 1. Source data consists of invoices and delivery records. If the source data on purchased quantities is not available, actual or estimated energy consumption data is used. Estimations are always conservative. It may occur that fuel supply to third (non-DEME) equipment is not separately registered when the fuel is included in the invoice/delivery record of the DEME equipment or DEME project reported figure.
- Vessels in co-ownership are considered as subcontracted, however accounted for in scope 1 when their consumption could not be separately identified.
- 3. Energy supplied to third equipment is not registered separately when shared fuel tanks are used on site.
- 4. The quantity of gas consumed is reported in GCV (higher or gross calorific value), not NCV (lower or net calorific value).
- 5. For each flight, the total of air miles is provided by the travel agency.
- 6. The fuel consumption of cars is based on the data provided by the fuel supplier (invoices). Here, all invoices from the fuel supplier are considered (i.e., including use of the car for private purposes).
- 7. The use of private cars for business purposes is compiled from the reimbursed expenses for employees.
- 8. The fuel consumption for the ships of DEME Building Materials includes the total energy consumption of all their activities throughout Europe.
- 9. Except for the emissions for maritime & fluvial transport and chartered vessels all the scope 3 emissions are calculated based on the total cost of sales and by applying average CO2 emission conversion factors [DEME-QHSES-DOC-002].

08. INVENTORY VERIFICATION AND GLOBAL WARMING POTENTIAL VALUES

Depending on our reporting purposes, we use different emission factors.

Most of the GHG emissions are calculated based on the GHG emission factors listed on the website www.CO2emissiefactoren.nl as prescribed by the CO₂ Performance ladder handbook 3.1.

For activities which are not listed on the website, different sources are consulted. The table below gives an overview of the other sources.

ACTIVITY	CO2 EMISSION FACTOR	SOURCE REFERENCE
PROCUREMENT OF STEEL	2100 KG CO2/TON STEEL	STUDY CRADLE TO GATE TATA STEEL
PROCUREMENT OF CONCRETE	54 KG CO2/TON CONCRETE	SBK DATABASE
RESIDUAL WASTE PROCESSING	1,83 KG CO2/TON WASTE	CHAIN ANALYSIS GDF SUEZ NETHERLANDS

To guarantee the quality of the CO2 emission inventory, internal routine checks are performed in combination with external verification assessments (2019).

To identify significant emissions, DEME uses the ranking method as described in section §4.A.1 of the CO2 Performance ladder.

09. WHAT IS ENERGY?

Energy comes in many forms and is literally everywere. In this report, energy (E) is either expressed in Joules (J) or Kilowatt Hours (kWh). A common mistake is using the unit Watt (W) to express energy. Watt is however the unit of power (P), and power is an amount of energy used during a certain time period.

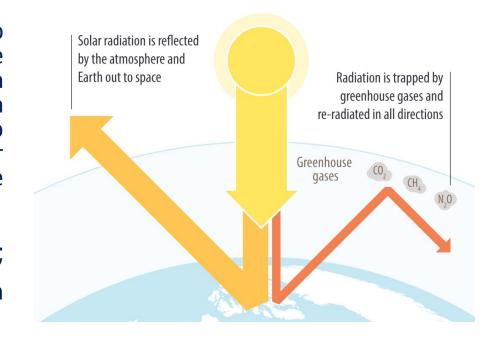
There is a fixed relationship between the above units that can be expressed as follows:

$$P = 1 W = 1 \frac{J}{s}$$

$$E = 1 kWh = 1000 \frac{J}{s} * 3 600 s = 3 600 000 J$$

Note that 1J is a very small amount of energy. That is why we often talk about Giga Joules (GJ) or Terra Joules (TJ). Burning 1m³ of Marine Diesel Oil, releases 36 GJ of energy. If this amount of fuel is burned in 1 hour, the average power that is released during that hour is 10 MW.

ACTIVITY	CO2 EMISSION FACTOR	SOURCE REFERENCE
PROCUREMENT OF STEEL	2100 KG CO2/TON STEEL	STUDY CRADLE TO GATE TATA STEEL
PROCUREMENT OF CONCRETE	54 KG CO2/TON CONCRETE	SBK DATABASE
RESIDUAL WASTE PROCESSING	1,83 KG CO2/TON WASTE	CHAIN ANALYSIS GDF SUEZ NETHERLANDS


Energy sources can be categorised as renewable or nonrenewable. Renewable energy sources can easily be replenished, while nonrenewable cannot.

\$\frac{\psi_{1}}{2}

10. WHAT IS CO₂?

Carbon dioxide is a gas consisting of one part carbon and two parts oxygen. It is one of the most important gases on the earth because plants use it to produce carbohydrates in a process called photosynthesis. It is however also a Greenhouse Gas (GHG). This means that it contributes to climate change by trapping solar radiation in our atmosphere, together with other GHGs like Nitrous Oxide (N_2O) and Methane (CH_4) which are the most common ones¹.

In this report, the unit 'kTon CO_2 ' and 'kTon CO_2 eq' are used. 'kTon' is the combination of 'kilo' (thousand) and 'ton' (thousand kg). Multiplying those two terms, results in 'Million kg' or 'kTon'.

The difference between CO_2 and CO_2 eq is that CO_2 eq (where eq stands for equivalents) also includes the Global Warming Potential (GWP) of N_2O and CH_4 . The effect of these GHGs is calculated in terms of amount of CO_2 . The GHG effect of 1kg N_2O is the same as 265 kg CO_2 , while for 1 kg CH_4 this translates to 30 kg CO_2 . This might seem like a lot, but it is important to note that most of our DEME GHG emissions (>90%) are CO_2 .

¹Except for water vapour

PROGRESS AND CARBON Extern FOOTPRINT REPORT BELGIUM & THE NETHERLANDS

- 00 SCOPE OF ENTITIES
- 01 EVOLUTION SCOPE 1 EMISSIONS
- 02 EVOLUTION SCOPE 2 EMISSIONS
- 03 REDUCTION TARGETS SCOPE 1 AND 2 EMISSIONS
- 04 SCOPE 1 TARGET PROGRESS
- 05 SCOPE 2 TARGET PROGRESS
- 06 SCOPE 3 TARGET PROGRESS
- 07 ENERGY MANAGEMENT ACTION PLAN
- 08 EMISSIONS AND REDUCTIONS PROJECT LEVEL
- 09 SCOPE 1 AND 2 CARBON FOOTPRINT
- 10 REFERENCES CO2 PERFORMANCE LADDER

00. SCOPE OF ENTITIES

The scope of the Progress and Carbon Footprint Report limits to the entities of $\rm CO_2$ Performance ladder.

Entity	Expiry date	Expiry status
AANNEMINGSMAATSCHAPPIJ DE VRIES & VAN D		
CO2 prestatieladder	13-03-2024	Certificate valid
BAGGERWERKEN DECLOEDT & ZOON NV (BDC)		
CO2 prestatieladder	13-03-2024	Certificate valid
DE VRIES & VAN DE WIEL BEHEER BV		
CO2 prestatieladder	13-03-2024	Certificate valid
DE VRIES & VAN DE WIEL KUST- EN OEVERWERKE		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME BLUE ENERGY NV (DBE)		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME BUILDING MATERIALS BV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME BUILDING MATERIALS NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME ENVIRONMENTAL NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME INFRA NL		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME INFRA NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME OFFSHORE BE NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME OFFSHORE HOLDING NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME OFFSHORE NL BV		
CO2 prestatieladder	13-03-2024	Certificate valid
DEME OFFSHORE PROCUREMENT & SHIPPING LU		
CO2 prestatieladder	13-03-2024	Certificate valid
DREDGING INTERNATIONAL NETHERLANDS BV		
CO2 prestatieladder	13-03-2024	Certificate valid
DREDGING INTERNATIONAL NV		
CO2 prestatieladder	13-03-2024	Certificate valid
DREDGING, ENVIRONMENTAL & MARINE ENGINE		
CO2 prestatieladder	13-03-2024	Certificate valid
MILIEUTECHNIEK DE VRIES & VAN DE WIEL B.V		
CO2 prestatieladder	13-03-2024	Certificate valid
ZANDEXPLOITATIEMAATSCHAPPIJ DE VRIES & VA		
CO2 prestatieladder	13-03-2024	Certificate valid

01. EVOLUTION OF SCOPE 1 EMISSIONS

During 2021,

133 kTon

of scope 1 CO₂ emissions were emitted in Belgium and The Netherlands as a result of our activities.

This is a decrease of

30%

with respect to 2020.

EVOLUTION OF SCOPE 1 CO₂-EMISSIONS

02. EVOLUTION OF SCOPE 2 EMISSIONS

During 2021,

0,68 kTon

of scope 2 CO₂ emissions were emitted in Belgium and The Netherlands as a result of our activities.

This is a decrease of

69%

with respect to 2020.

EVOLUTION OF SCOPE 2 CO₂-EMISSIONS

03. REDUCTION TARGETS SCOPE 1, 2 AND 3 EMISSIONS

DEME'S AMBITION BELGIUM AND THE NETHERLANDS

TARGET	TARGETYEAR	SCOPE
HQ ZWIJNDRECHT OFFICES - ZERO CARBON EMISSIONS	2025	1, 2
OFFICES IN BENELUX 100% GREEN ELECTRICITY	2025	2
PROJECT SITES IN BENELUX 100% GREEN ELECTRICITY	2025	2
CLIMATE NEUTRAL IN OPERATIONS WITH MACHINERY & EQUIPMENT	2030	1, 2
65 GRAMS CO2/KILOMETER FOR LEASE CARS	2025	1

04. SCOPE 1 TARGET PROGRESS

During 2021, the average CO₂ emissions of our fleet was

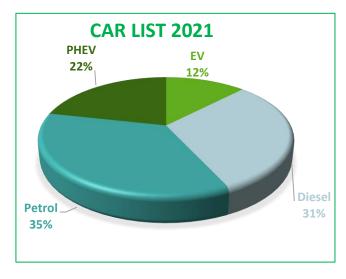
91 g/km.

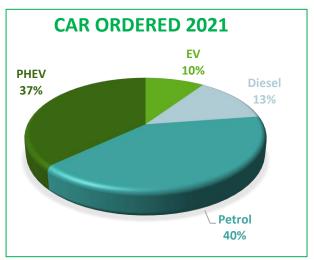
This is a decrease of

7%

with respect to 2020.

This means we will decarbonize our fleet with at least 6 g/km on average during the coming 5 years in order to achieve our target.


CO2 EMISSIONS LEASE CARS



TRANSPORT OF PEOPLE - CARS

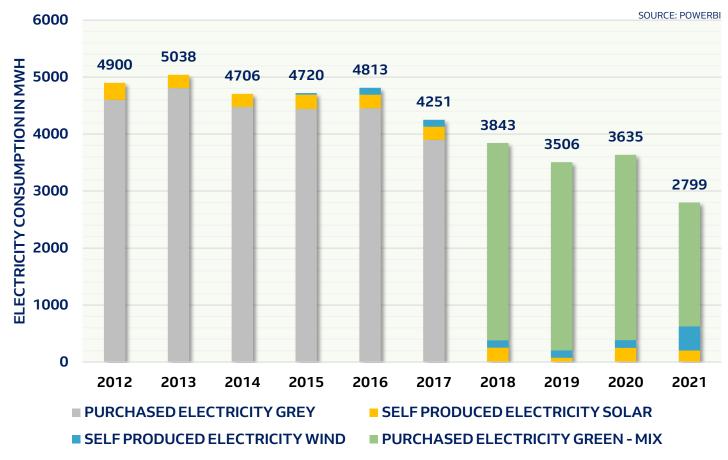
DEME CAR FLEET

04. SCOPE 2 TARGET PROGRESS

During of 2021, the total electricity consumption was

2799 MWh

at HQ Campus Zwijndrecht.


This is a decrease of

23%

with respect to 2020.

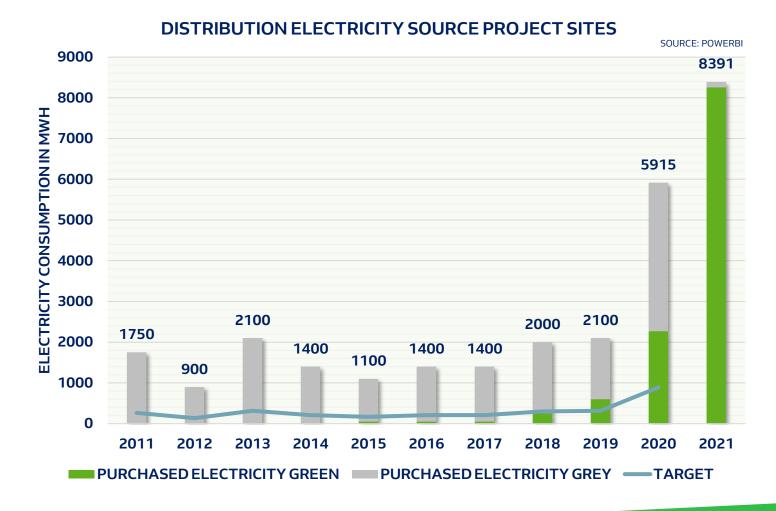
All the electricity that was consumed at HQ, came from renewable energy sources.

DISTRIBUTION ELECTRICITY SOURCE HQ

04. SCOPE 2 TARGET PROGRESS

During 2021, the total electricity consumption was

8391 MWh

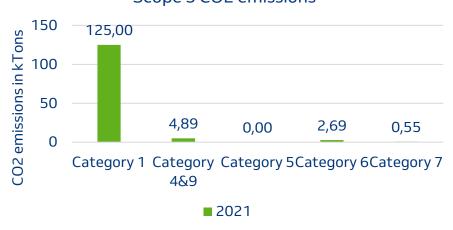

at our project sites in BeNe.

This is an increase of

42%1

with respect of 2020.

85% of electricity that was consumed at our project sites, came from renewable energy sources.


¹This increase is caused by expanding our scope of projects

DEME has analysed its scope 3 emissions and decided to monitor only 4 emission categories (see table 5.1 GHG Protocol Scope 3 Standard in the 'Handreiking Aanbesteden Versie 3.0') for which the amounts are measurable and reducible; e.g.:

- Cat 1: purchase of goods & services (concrete, steel, fuel consumption of hired equipment);
- Cat 4 & 9: transport;
- Cat 5: generated waste;
- Cat 6: air travel;
- Cat 7: commuter travel.

The scope 3 emissions for 2020 are shown in the graph below. Scope 3 CO2 emissions

Not all the scope 3 emissions are calculated based on real data, some emissions are calculated by CO2 conversion factors retrieved from literature. The reliability of the scope 3 emissions is indicated in the table below.

Emission category	% based on product carbon footprints or real data
Category 1	95%
Category 4&9	94%
Category 5	0%
Category 7	0%

The category 1 scope 3 emissions consist of several subcategories: concrete, steel & fuel consumption for hired equipment.

2021

To get more insight in its chain emissions, chain analysis were conducted:

Construction of windfarm "Rentel Project"

 In 2019 we started a new chain study on the Rentel Wind Turbine project. Depending on this outcome of this study and the review by an independent recognized consultancy, we will be able to formulate new objectives.

Maritime & fluvial marine aggregates transport

• DBM analysed its activities for processing and supplying marine aggregates. The major contribution of its scope 3 emissions is due to external transport activities. Therefore, DBM established a reduction policy for its maritime & fluvial transport. The policy aims for a 6 % reduction in CO2 emissions per ton km, starting from 2015 till 2022.

Infrastructural works "Blankenburgverbinding"

• In the beginning of 2020, a chain study was carried out for project Blankenburgverbinding. Based on the results of this study, new targets will be set.

DEME's energy reduction program is evaluated and assessed by means of an energy management action plan. Ref. document DEME-QHSES-PRE-012. This action plan is linked to the Sustainability Programs on Climate & Energy. Reference is also made to our Year Action Plan on Energy & GHG emissions (DEME-GHG-YAP).

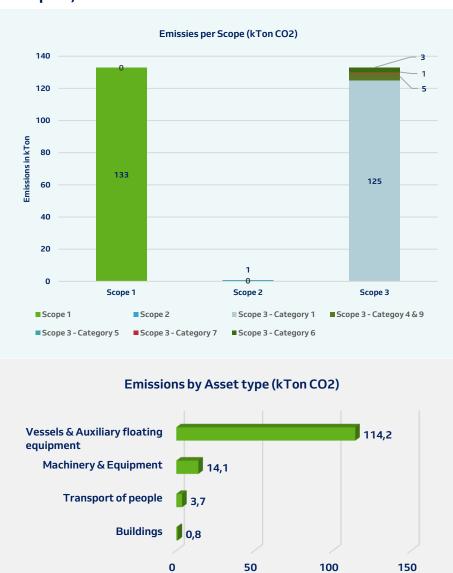
16. Emissions and reductions – Project level

Emissions and reductions related to projects with a specific award advantage on the CO2 Performance Ladder are separately reported.

An overview of these projects is given in the table below.

Further information about the projects can be found at DEME's corporate website.

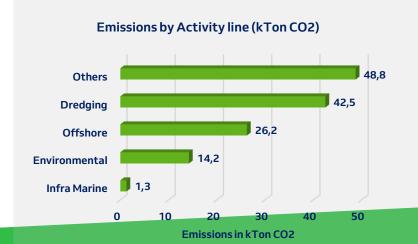
Project budget nb.	Project description	Status project
5264	Maintenance dredging of rivers NL	On-going since 2016
5447 - 5453	Rijnlandroute	On-going in 2020
5547 -5548	Blankenburgverbinding	On-going since 2017
5509 - 5513	Lock Terneuzen	On-going in 2020
5568	ROCO - Oosterweelverbinding	Start-up in 2021
5666	Maintenance dredging work coastal marinas	On-going since 2019
5820	Maintenance dredging of rivers NL	Start-up in 2020
5834	DVVW – Sterke Lekdijk	Start-up in 2021
5871-5892	COTU - The Scheldt tunnel	Start-up in 2021

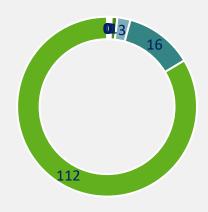


CO2 EMISSIONS DASHBOARD (BENE)

CO2 COMMUNICATION ACTIVITIES BELGIUM - THE NETHERLANDS

Extern


Scope 1, 2 and 3


Emissions in kTon CO2

Scope 1 and 2

Emissions by Energy subtype (kTon CO2)

Self-produced electricity green biomass	= 112
Marine Residual Fuel with Sulphur < 0.1%	= 0
■ CNG	= 0
■ Marine Residual Fuel with Sulphur < 0.5%	= 16
■ Purchased Electricity Green biomass	= 3
■ Fuel diesel for heating	= 0
Purchased Electricity Grey	= 0
■ Natural Gas	= 0
■ Purchased Electricity Source Unknown	= 1
Petrol E95	= 0
LNG	=0